ABBYY Cup 3.0

Solutions are presented as using the least memory and the fastest execution time. It also takes the top 10 most recent solutions from each language. If you want to limit to a specific index, click the "Solved" button and go to that problem.

ContestId
Name
Phase
Frozen
Duration (Seconds)
Relative Time
Start Time
316 ABBYY Cup 3.0 FINISHED False 14400 360781199 June 12, 2013, 1 p.m.

Problems

Solved$
Index
Name
Type
Tags
Community Tag
Rating
( 455 ) D2 PE Lesson PROGRAMMING dp 2300

B'Smart Beaver decided to be not only smart, but also a healthy beaver! And so he began to attend physical education classes at school X. In this school, physical education has a very creative teacher. One of his favorite warm-up exercises is throwing balls. Students line up. Each one gets a single ball in the beginning. The balls are numbered from 1 to n (by the demand of the inventory commission). After receiving the balls the students perform the warm-up exercise. The exercise takes place in a few throws. For each throw the teacher chooses any two arbitrary different students who will participate in it. The selected students throw their balls to each other. Thus, after each throw the students remain in their positions, and the two balls are swapped. In this case there was a throw between the students, who were holding the 2-nd and the 4-th balls. Since the warm-up has many exercises, each of them can only continue for little time. Therefore, for each student we know the maximum number of throws he can participate in. For this lessons maximum number of throws will be 1 or 2. Note that after all phases of the considered exercise any ball can end up with any student. Smart Beaver decided to formalize it and introduced the concept of the "ball order". The ball order is a sequence of n numbers that correspond to the order of balls in the line. The first number will match the number of the ball of the first from the left student in the line, the second number will match the ball of the second student, and so on. For example, in figure 2 the order of the balls was (1, 2, 3, 4, 5), and after the throw it was (1, 4, 3, 2, 5). Smart beaver knows the number of students and for each student he knows the maximum number of throws in which he can participate. And now he is wondering: what is the number of distinct ways of ball orders by the end of the exercise. The first line contains a single number n -- the number of students in the line and the number of balls. The '...

Tutorials

ABBYY Cup 3.0. Solutions

Submissions

No solutions yet.