Pinely Round 1 (Div. 1 + Div. 2)

Solutions are presented as using the least memory and the fastest execution time. It also takes the top 10 most recent solutions from each language. If you want to limit to a specific index, click the "Solved" button and go to that problem.

ContestId
Name
Phase
Frozen
Duration (Seconds)
Relative Time
Start Time
1761 Pinely Round 1 (Div. 1 + Div. 2) FINISHED False 9000 68311463 Nov. 20, 2022, 2:35 p.m.

Problems

Solved$
Index
Name
Type
Tags
Community Tag
Rating
( 84 ) F2 Anti-median (Hard Version) PROGRAMMING combinatorics dp math

B"This is the hard version of the problem. The only difference between the two versions is the constraint on n . You can make hacks only if all versions of the problem are solved. Let's call an array a of odd length 2m+1 (with m ge 1 ) bad, if element a_{m+1} is equal to the median of this array. In other words, the array is bad if, after sorting it, the element at m+1 -st position remains the same. Let's call a permutation p of integers from 1 to n anti-median, if every its subarray of odd length ge 3 is not bad. You are already given values of some elements of the permutation. Find the number of ways to set unknown values to obtain an anti-median permutation. As this number can be very large, find it modulo 10^9+7 . The first line contains a single integer t ( 1 <= t <= 10^4 ) -- the number of test cases. The description of test cases follows. The first line of each test case contains a single integer n (2 <= n <= 10^6) -- the length of the permutation. The second line of each test case contains n integers p_1, p_2, ldots, p_n ( 1 <= p_i <= n , or p_i = -1 ) -- the elements of the permutation. If p_i neq -1 , it's given, else it's unknown. It's guaranteed that if for some i neq j holds p_i neq -1, p_j neq -1 , then p_i neq p_j . It is guaranteed that the sum of n over all test cases does not exceed 10^6 . For each test case, output a single integer -- the number of ways to set unknown values to obtain an anti-median permutation, modulo 10^9+7 . In the first test case, both [1, 2] and [2, 1] are anti-median. In the second test case, permutations [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2] are anti-median. The remaining two permutations, [1, 2, 3] , [3, 2, 1] , are bad arrays on their own, as their median, 2 , is in their middle. In the third test case, [1, 2"...

Tutorials

Pinely Round 1 (Div. 1 + Div. 2) Editorial

Submissions

Submission Id
Author(s)
Index
Submitted
Verdict
Language
Test Set
Tests Passed
Time taken (ms)
Memory Consumed (bytes)
Tags
Rating
181811915 dmenezes F2 Nov. 20, 2022, 6:46 p.m. OK GNU C++17 TESTS 102 795 37888000
181809122 Benq F2 Nov. 20, 2022, 6:18 p.m. OK GNU C++17 (64) TESTS 102 608 61132800
181813278 ecnerwala F2 Nov. 20, 2022, 7:01 p.m. OK GNU C++20 (64) TESTS 102 186 18022400
181813452 ecnerwala F2 Nov. 20, 2022, 7:03 p.m. OK GNU C++20 (64) TESTS 102 264 22016000
181819747 ecnerwala F2 Nov. 20, 2022, 8:22 p.m. OK GNU C++20 (64) TESTS 102 280 18022400
181812897 ecnerwala F2 Nov. 20, 2022, 6:57 p.m. OK GNU C++20 (64) TESTS 102 295 18022400
181812682 ecnerwala F2 Nov. 20, 2022, 6:54 p.m. OK GNU C++20 (64) TESTS 102 296 18022400
181812626 ecnerwala F2 Nov. 20, 2022, 6:54 p.m. OK GNU C++20 (64) TESTS 102 311 26112000
181812463 ecnerwala F2 Nov. 20, 2022, 6:52 p.m. OK GNU C++20 (64) TESTS 102 327 26112000
181811716 ecnerwala F2 Nov. 20, 2022, 6:44 p.m. OK GNU C++20 (64) TESTS 102 374 37990400
181811738 jiangly F2 Nov. 20, 2022, 6:44 p.m. OK GNU C++20 (64) TESTS 102 514 49971200
181814199 maroonrk F2 Nov. 20, 2022, 7:11 p.m. OK GNU C++20 (64) TESTS 102 561 142950400

remove filters

Back to search problems